A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2
نویسندگان
چکیده
Plant pathogens secrete effector proteins to promote host colonization. During infection of tomato xylem vessels, Fusarium oxysporum f. sp. lycopersici (Fol) secretes the Avr2 effector protein. Besides being a virulence factor, Avr2 is recognized intracellularly by the tomato I-2 resistance protein, resulting in the induction of host defenses. Here, we show that AVR2 is highly expressed in root- and xylem-colonizing hyphae three days post inoculation of roots. Co-expression of I-2 with AVR2 deletion constructs using agroinfiltration in Nicotiana benthamiana leaves revealed that, except for the N-terminal 17 amino acids, the entire AVR2 protein is required to trigger I-2-mediated cell death. The truncated Avr2 variants are still able to form homo-dimers, showing that the central region of Avr2 is required for dimerization. Simultaneous production of I-2 and Avr2 chimeras carrying various subcellular localization signals in N. benthamiana leaves revealed that a nuclear localization of Avr2 is required to trigger I-2-dependent cell death. Nuclear exclusion of Avr2 prevented its activation of I-2, suggesting that Avr2 is recognized by I-2 in the nucleus.
منابع مشابه
The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly.
To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key molecules in determining disease susceptibility or resistance. We show here that Avr2, secreted by the v...
متن کاملStructure–function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune‐suppressing activity from recognition
Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full viru...
متن کاملUptake of the Fusarium Effector Avr2 by Tomato Is Not a Cell Autonomous Event
Pathogens secrete effector proteins to manipulate the host for their own proliferation. Currently it is unclear whether the uptake of effector proteins from extracellular spaces is a host autonomous process. We study this process using the Avr2 effector protein from Fusarium oxysporum f. sp. lycopersici (Fol). Avr2 is an important virulence factor that is secreted into the xylem sap of tomato f...
متن کاملGenetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f.sp. lycopersici
Fusarium wilt caused by Fusarium oxysporum f.sp. Lycopersici is one of the major obstacles to the production of tomato which causes huge losses in tomato products worldwide. In order to increase the tolerance to this disease, a triple structure containing PR1, chitinase and glucanase genes controlled by 35S promoter was transferred to tomato. Eight days after planting on pre-culture me...
متن کاملCladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance.
How plants recognize pathogens and activate defense is still mysterious. Direct interaction between pathogen avirulence (Avr) proteins and plant disease resistance proteins is the exception rather than the rule. During infection, Cladosporium fulvum secretes Avr2 protein into the apoplast of tomato leaves and, in the presence of the extracellular leucine-rich repeat receptor-like Cf-2 protein, ...
متن کامل